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OPTIMAL PRESTRESS AGAINST BUCKLING:
AN ENERGY APPROACHt

J. E. TAYLORt

The University of Michigan, Ann Arbor

Abstract·_·Structures that have a reserve capacity beyond buckling can generally be stiffened against buckling
through the use of prestress. The design of prestress for such cases is treated in a way which leads to the maximiza
tion of the buckling load for a prescribed available prestress strain energy. The formulation given for this optimal
design problem relates closely to the energy principles of structural analysis. Optimal prestress configurations
are determined for the circular plate, and for a second example structure in the form of a stut-membrane system.
Developments from the study of prestress design are related to past results from postbuckling analysis.

1. INTRODUCTION

THIS paper treats a category of problems among those where the response of a structure
depends in a substantial way on initial stress state. Specifically, the object of the study is
to determine how to best predispose a structure via prestress in such a way as to defer
buckling, The structural form itself is taken to be fixed,

The idea of prestressing this way is sensible only for structures that exhibit redundancy
relative to buckling. Consider for example a statically redundant truss, loaded to the point
where the member most susceptible to buckling reaches its critical state. Buckling of the
member is reflected in the truss as a softening rather than collapse. It is generally possible
in this situation to pretension the particular member via prestress. This has the effect of
raising the external load at which it buckles, thereby stiffening the truss.

Plates can be prestressed against buckling as well. Stoker [IJ investigated certain
prestress configurations for stiffening the circular plate. Although the mechanism by which
the plate becomes stiffened is obscure relative to the truss example, the situation is in
fact much the same. Redundancy relative to buckling is identified in plates with their
capacity to sustain loads beyond the critical value. The (first mode) buckling load may be
increased via a prestress field that pretensions the interior or least well supported regions
of the plate.

As noted, it is possible to stiffen a structure by prestress only where some characteristic
redundancy is present. On the other hand, it seems to hold in general that where the redund
ancy exists, the occurrence of "first buckling" can be deferred. Prestress might be used to
advantage in the design of stay-support masts, rib-membrane structures, and beams relative
to lateral buckling, to name but a few other examples. However, the merit of using prestress
in this way depends a great deal on the type of structure, the nature of its use, relative
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costs, and so forth. It should also be noted that the ultimate capacity of a structure is in
general unaffected by the type of prestress considered in this study. (This is implicit in the
results ofseveral studies on the collapse after buckling of redundant structure, e.g. Masur [2].
Masur and Milbradt [3].) Therefore, wherever design is more sensibly based on ultimate
capacity, the subject prestress is of no use.

Given that there is purpose in prestressing against buckling, the objertive of this study
is to provide a theory for the prediction of an optimal prestress configuration. The optimal
prestress is simply the one which maximizes the "first-buckling" load. The optimization
problem is formulated in a way that relates closely to the conventional energy principles
of structural analysis. This representation of the prestress design problem parallels the
developments in [4J and [5J of energy formulations for the optimal design of member
shape. As in those cases, the analytics takes the form of an isoperimetric problem in the
calculus of variations.

The theory is demonstrated for two structural forms, the plate, and a bar-membrane
model. Numerical results provide some measure of the effectiveness of prestress for these
forms. A proof of optimality (written for the plate) substantiates the identity between
extremization of energy and maximization of the buckling load.

2. OPTIMUM PRESTRESS OF PLATES

As noted in the introduction, the optimum prestress problem is treated here in a form
which relates to the common variational methods of analysis. Also, the present purposes
are served by nothing deeper among plate theories than the classical Kirchoff plate model.
In other words, the governing equations for the prestress design problem are derived for
the classical model via an energy formulation. The equations are solved for the example
of a simply supported uniform circular plate.

For plate buckling analysis, the change in potential energy associated with the buckling
process may be expressed as (for example, see [6J):

G = ~t NijW'iW'j dA +~t [(1- v)w'ijw'ij+ VW'kkW'qq] dA (1)

w(x i ) symbolizes lateral displacement of the plate from the flat to the buc!,:led configuration,
while Nij represents the total in-plane stress resultant at buckling. The condition i5G = 0
leads to the familiar equation

(2)

(3)

and associated boundary and corner conditions.
A prestress field, say N~, is defined by

N~'j = 0 over the plate region R

N3nj = 0 on the plate boundary B

The vector n· is a unit outer normal on B. Where such a self-equilibrated stress field occurs,
the total in-plane stresses Nij include the N~ and the change in the field, say P'Nij • associated
with the edge loading, i.e.

o -Nij-PN ij (4)
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Nij'j = 0 in R

215

(5)

Pri represents the specified edge tractions. The constant P measures magnitude of the load;
P > 0 for compression. Equations (2H5) summarize the analysis problem for the plate
with prestress N8.

The present treatment for optimum prestress may be described through the problem
statement:

Determine from among all admissible fields N8 the one which maximizes the
buckling load P. The admissible N3 includes all self-equilibrated fields of specified
total strain energy.

The relevance in a technical sense of such an approach for the design of prestress is
discussed in Section 5. The solution of this problem is identified with an extremum within
the stated constraint on prestress energy ofthe energy G. This identity is verified in Section 4.

In order to state concisely the energy U0 t SR N8e8 dA of self equilibrated stress
fields, the stress function </> is introduced:

The simple material law

° N- o bN0 s:eij = a ij+ kkUij

(6)

(7)

(a and b are the usual material constants for an isotropic material) is applied along with
(6) to obtain

(8)

For specified magnitude of prestress energy C, the condition

summarizes admissibility. Recall that the </> are required to meet boundary condition (3).
The constraint on U° is appended to energy G in the usual way:

H = G-A(Uo-C)

= L{~[(l-V)W'ijW'ij+VW'kkw.qq]+M -PNij+(</>'kkDij-</>'ij)]W'iW'j} dA

- A[~1(a</>'ij(j>'ij + b(j>'kk(j>'qq) dA cJ (9)

The solution of the prestress design problem turns out to be an extremal of the constrained
functio~al H. Thus the governing equations are equation (2), rewritten here in terms of </>,
P and N ij,

(10)
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with the associated boundary conditions. and

le(a +h)1J'iiU -HW.i;l\\; Wjiw, u) = 0 (I ! j

In other words, the functions 1J and w which satisfy equations (10) and (II) represent the
optimum prestress and associated buckling response. Once again, this is to be verified in
Section 4.

Solution jar the circular plate

The solution is to be developed for the simply supported circular plate under uniform
edge thrust p, within the assumption that the buckled shape is axisymmetric. For this
case equations (10) and (11) may be reduced to

d [D d J °-- --(rfJ). = (N - p)fi
dr r dr

- -
021

in terms of:

I 2
························fi
2A(a+h)

(l.3)

fi = dw/dr

NO = the radial component of the stress field

The equations are now stated more simply in terms of the resultant NO, rather than the
stress function. At the edge r = r,

dfil =0 (14)
drl~r

N°lr~r = 0 (15)

Also.
IJlr~() =0 (16)

To facilitate the development ofa numerical solution, the system (12H 16) is transformed
as follows

o~ p = rlr ~ 1:
( 17)

}' rfil[2,i,(a+h)D]l

In the nondimensional form,

[(py)' /p]' = (I] -n))'

(p31]')' /P = },2

/(1) = 0

f/(l) = 0
}'(O) = 0

Prime indicates derivative with respect to p.

(181
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Solutions of the system (18) are obtained for a set of values of the load parameter Jr.

(Numerical results were generated via a simple iterative scheme; Friedrichs and Stoker [7]
used alternatively perturbations and power series expansions to treat the same equations.)
Typical prestress fields are shown in Fig. 1. Figure 2 shows the effect on buckled shape of
increasing levels of prestress. In this problem, the assumptions ofaxisymmetry and con
tinued elastic response allow that the model predicts Jr -+ OCJ as the prestress energy increases
without bound. The corresponding situation for the postbuckled plate is described in [7].

3. A BAR-MEMBRANE MODEL

As a second application of the theory, the prestress is to be designed for a structure
comprised of a membrane attached to a bar or rib (See Fig. 3). The membrane and bar
are viewed as components which may be specified individually, so the structure is a two

15f--~~-+----=--±~~----"".e--~~-+~----I

05r-~~-+--~~---t~~~-pl""'-:-~-+~-+---I

o
Radial coordinate p

FIG. I. Typical radial prestress fields for the simply supported circular plate.
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FIG. 2. Typical buckling modes for the prestressed circular plate.
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" ---------

( 19)

FIC. 3. The har-membrane Structural system.

element system. Since the prestress is associated with the membrane only, certain features
of the prestress design problems are revealed more clearly through the treatment of this
model than in the study of the (single-element) plate.

The bar-membrane model may be thought to simulate a portion of a pressure
stabilized rib-reinforced structure. Thus it is of some technical interest to recognize what
can be accomplished here through prestress design. On the other hand, the analytics for
this model involves nothing new over the development for the plate. For simplicity, the
membrane stress field is taken to be one dimensional, i.e. suppose the membrane is attached
in a way that admits the stress resultant field N~x = N~y == 0; N~y = N°(x). The governing
functional is then [much like H of (9)J:

2H = J:' (~:V2 +EIv'" - PV,2 )dx - A(~ f N0 2

dx - 2C )

expressed in terms of

EI = flexural rigidity of the bar

k = stiffness of the membrane

a= length of the membrane

L = length of the bar

v(x) = lateral displacement of the bar

A = constant multiplier.

Prime indicates derivative with respect to x. The first term in (19) reflects the bar-membrane
interaction. Constant C again represents the specified magnitude of prestress energy.
The coordinates, dimensions, and so forth are indicated in Fig. 3. The possibility of
buckling in the plane of the membrane is excluded.

The governing equations bH = 0 are, from (19)

(Elv"Y' +Pv" +N°via = 0 (20)
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with associated boundary conditions and

v2 -2a2No/k = 0
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(21)

The solution of(20), (21), say (N°* ; v* ; P*), represents the optimum prestress and associated
buckling load and configuration. Again, the optimal character of this solution is demon
strated in Section 4.

u = GW;

Solutions

The system (20), (21) is put into nondimensional form by the transformation:

2x )--1 :::;; l'L -,

in which the constants IY. and n are

(22)

13
n=--

APa

In terms of u and N

KU"" +u" +uN = 0

or if N is eliminated,

KU"" +u" +u3 = 0

The parameter K is

K = 4EI/P13

or with the end load P expressed as P = r 2EI/13,

K = 4/r2

(23)

(24)

(25)

(26)

For membrane stiffness k > 0, the buckling load r2 > ri = eigenvalue for the unsupported
bar. Thus the range of K is 0 ~ K ~ 4/r7. Solutions are obtained via an iterative scheme
based on the equation

KU'k" +u'k = -U~-1 (27)

Typical results for the simply supported bar are given in Fig. 4.
For the limit value K = 0, equation (25) may be integrated directly. The solution in

terms of elliptic functions is

[
-1 W 1 J JF cos )C; )2 = (2 C)z (28)

In this case of zero flexural rigidity, one might take the bar to be comprised of a set of
rigid blocks hinged together. Thus the structural capacity depends wholly on the membrane
prestress. The optimum system is compared for this case to one for which the membrane
has uniform prestress. With equal prestress energies, the ratio of buckling loads turns
out to be 5/4.
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FIG. 4. Typical buckling modes for the bar membrane structure.

4. PROOF OF OPTIMALITY

The object is to show that the necessary conditions for the characteristic energ)
functional H to be stationary are in fact necessary and sufficient for the optimization
problem stated in Section 2. In other words, it is to be proved that the solution of equations
(10), (11) or (20), (21) correspond to maximization of the buckling loads in the respective
cases. The proof is written specifically for the plate problem.

For convenience in writing the proof. the w(x;! are taken to be normalized such that

(29i

This in effect fixes the value of the unspecified multiplier A. The value of ).IS itself unimpor
tant. Thus the potential energy is written

G(w;N~;P) = U(w;Nr;)--p (30)

The form of strain energy U follows the expression of energies in equation (9). For an>
admissible prestress field and the associated eigenfunction wand eigenvalue P.

Ull

In particular, the equation holds for the solution, say (w*; N~*; P*). of equations (IOl.
(11 ).

From equation (31) with the generic (w; N ~; Pl. and the same equation written for the
starred solution, we have

p* -p = U(w*; Nij*)- U(w; N?)

By the principle of minimum potential energy

G(w;Nij;P) ~ G(w*;Nij;P)

or in view of (30)

U(w; Nij) ~ U(w*; Nij)

(32)

(33)
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(35)

(34)

Equations (32) and (33) lead to

p*-p;:;; U(w*;N~*)-U(w*;N~)= L(N~*-N~)w~w~dA

It may be established from (11) that,

LN~(w~w~-2Ae~*)dA = 0

Equation (35) holds for any admissible N'tj, which of course includes the putative optimum
field N~*.

Making use of (35), (34) can be written

p* - p ;:;; 2A L(Ni~* - N~)e~* dA = 2A (c-LN~e~* dA ) (36)

But
(37)

since the starred and unstarred fields are both actual solutions and therefore the product
(N~* - N~)(e~* - e~) is a measure of strain energy. Now !N~*e~* = !N~e~ = C by the
admissibility condition on prestress fields, and N~*e~ = N~e~*. Thus (37) furnishes

2(C- LN~e~* dA) ;:;; 0 (38)

By comparison of (36) and (38), p* - P ;:;; 0 and the proof is complete.
The optimal prestress problem may now be summarized in several ways. It has been

shown that:

1. The Euler~Lagrange equations (10), (11) for the functional H are sufficient
conditions for a maximum of the buckling load.

The solution of these equations is unique (aside from the sign of w) for loads P no greater
than the value at which buckling in a higher mode might occur. Thus the analytical charac
terization of the problem is complete. Recall that the admissibility conditions on prestress
were incorporated in the formation of H.

In view of the result p* - P ;:;; 0 and equation (32), it follows as well that:

2. The admissible prestress field which maximizes the strain energy associated
with buckling maximizes the buckling load.

A related, sharper statement on strain energies may be made:

3. The admissible prestress field that maximizes the part of the buckling strain
energy associated with prestress maximizes the buckling load.

One approach to the proofof 3 follows closely the development in [6J of a minimum-energy
principle for post-buckling behavior of plates.

Indeed, the post-buckling analysis and optimum design of prestress problems turn out
to be closely related. The governing equations (10), (11) for plate prestress are precisely
the same form as the familiar von Karman plate equations. This lends quantitative substance
to the intuitively appealing idea that: for a given plate, the prestress field appropriate to
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maximization of the buckling load is that field which will have the total membrane stress
at buckling equal to the post-buckling membrane stress for the initially stress free plate
under the same load. Moreover, the buckling mode is the same as the post-buckling
configuration of the unprestressed plate. The relation evidently holds for all structural
forms where the prestress is coupled with quadratic terms in the buckling deformation.

Finally, it is noted without proof that the determination of the "minimum-energy
prestress field" for specified buckling load is equivalent to the problem treated in this study.
This corresponds to a common form of reciprocity among isoperimetric problems in the
variational calculus [8].

SUMMARY

Two applications of a theory for the design of prestress have been discussed in detail.
The breadth of the theory itself may be judged for the most part from the problem descrip
tion given in the Introduction. As noted there, the possibility of stiffening via prestress
relates to the presence in the structure ofa redundancy relative to buckling. This redundancy
may in turn be identified quantitatively with the appropriate terms in a measure of the
post-buckling strain energy of the unprestressed structure (see for example [3J). The form
of proof of optimality given in Section 4 applies in general, as may be noted directly from
the details of that development.

The prestress design problem has been formulated in a way that makes use of energy
measures familiar in mechanics analysis. The same variational problem might be expressed
easily enough in other forms. The equivalent minimum-maximum problem statement, for
example, represents the conventional minimization relative to mode shape and a maximum
relative to prestress field of the Rayleigh quotient for the eigenvalue. Minimization of
prestress energy within a constraint reflecting the equations for buckling analysis provides
the statement in the form of a Lagrange problem, and so on. It seems that among these
various forms, the one used in this study leads most directly to a concise version of the
complete boundary value problem statement. Of course this form also provides the con
venience that one ordinarily associates with energy methods of analysis.

As noted in Section 2, the solution for the circular plate has the buckling load increase
indefinitely with increasing prestress energy. Stoker [1Jnotes that this increase is in fact
limited; eventually the buckling mode ceases to be axisymmetric. In addition, if the assump
tions ofaxisymmetry and continued elasticity are relaxed, the appropriate treatment of
the problem would indicate the eventual development of either buckling or yielding as a
result of the prestress itself. While some buckling under prestress (without yielding) might
be tolerated, there is surely a limit level (ultimate capacity) for prestress. This identifies in
one wayan ultimate capacity of the prestressed plate. Buckling under prestress is not an
issue with the bar-membrane structure, so in that case the limit on prestress relates to
material capacity only.

The optimal prestress field was identified in Section 4with the net postbuckled membrane
stress of an initially stress-free plate. The condition for H to be stationary relative to
prestress resembles the derivation of a compatibility equation. But the second of the von
Karman equations derives from the requirement that the membrane deformations must be
compatible with the shape of the buckled plate. Thus the identity might have been recog
nized simply from the form of the governing functional H.
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A6cTpaKT-KoHcTpYKI.\HH, 06JJap;alOlI.\He HeKOTophIM 3arraCOM crroc06HoCTH rrocne rroTepH YCTOH'IHBOCTH,
MoryT Bo06lI.\e CTaHOBHThCli lKeCTHe. B 3aKpHTH'IeCKOH 06nacTH nyreM BBep;eHHlI npep;BapHTcnhHoro
HarrplllKCHHlI. PaC'leT rrpcp;BapHTcnhHoro HanplllKCHHoro COCTOllHHlI p;nll 3THX cny'lacB npHBop;HT K MaKCH
ManH3aI.\HH Harpy3KH BhmY'lHBaHHlI p;nll 3ap;aHHoH cB060P;HOH 3HcprHH p;c4JopMal.\HH, BhITCKalOII.\eH 113
npet\BapHTcnhHoro HarrplilKeHHoro COCTOllHHlI. <l>opMMnHpaBKa, rrpep;CTaBnCHHa p;nll 3T0ro OrrTl!ManhHOro
paC'IeTa, TCCHO CB1I3aHHali CrrpHHI.\HrraMH 3HcprHH p;nll paC'ICTa KOHCTPYKI.\HH. OnpCp;Cnl'IOTCli orrTHManhHhlC
4JOPMhI p;nll KpyrnoH nnaCTHHKH H p;nll BTOpOro rrpHMcpa KOHCTpyKI.\HH THrra CTCplKHCBOH MCM6paHHoli.
CHCTeMhI. Pa3pa60TKa TCOpHH, BhITCKalOII.\all H3 paC'IeTa KOHCTPYKI.\HH C y'lCTOM rrpcp;BapHTcnhHoro
Harrpll)(CeHHlI, HMCCT orHomCHHC K rrpCjihIp;yII.\HM pe3ynbTaTaM aHanH3a nocJlc nOTepH YCTOH'IHBOCTH.


